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HIGHLIGHTS
� Intercropping is a useful practice when agricul-

tural sustainability is emphasized.

� We integrate biodiversity-ecosystem functioning
and intercropping.

� Intercropping optimizes ecosystem services
such as stabilizing yield and reducing use of
chemicals.

� Intercropping benefits are attributed partly to
complementarity and selection effects.

� Application of ecological principles is key to
sustainable agricultural development.
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GRAPHICAL ABSTRACT

ABSTRACT

Intercropping is a traditional farming system that increases crop diversity to

strengthen agroecosystem functions while decreasing chemical inputs and

minimizing negative environmental effects of crop production. Intercropping is

currently considerable interest because of its importance in sustainable

agriculture. Here, we synthesize the factors that make intercropping a

sustainable means of food production by integrating biodiversity of natural

ecosystems and crop diversity. In addition to well-known yield increases,

intercropping can also increase yield stability over the long term and increase

systemic resistance to plant diseases, pests and other unfavorable factors (e.g.,

nutrient deficiencies). The efficient use of resources can save mineral fertilizer

inputs, reduce environmental pollution risks and greenhouse gas emissions

caused by agriculture, thus mitigating global climate change. Intercropping

potentially increases above- and belowground biodiversity of various taxa at

field scale, consequently it enhances ecosystem services. Complementarity and

selection effects allow a better understanding the mechanisms behind enhanced

ecosystem functioning. The development of mechanization is essential for large-

scale application of intercropping. Agroecosystem multifunctionality and soil

health should be priority topics in future research on intercropping.

© The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)



1 CROP DIVERSIFICATION AS A
POTENTIAL SOLUTION TO THE
PROBLEMS OF INTENSIVE
MONOCULTURES

1.1 Problems of intensive monocultures
Global food demand is an increasingly crucial challenge for
humanity. Over the last 50 years, intensive agriculture has
increased food production by the use of high-yielding crop
cultivars, greater inputs of fertilizers, and water and pesticides[1],
and has contributed greatly to feeding humanity. However,
intensive agriculture often pursues the maximization of the
productivity of monocultures and crop diversity in intensive
agricultural systems is often reduced to one species which is
usually genetically homogeneous[2]. Intensive agriculture incurs
negative environmental impacts such as greenhouse gas
emissions, soil erosion and degradation, and loss of biodiver-
sity[3]. Soil acidification is a major feature in soils of intensive
Chinese agricultural systems. Two nationwide surveys show that
soil pH in China declined significantly from the 1980s to the
2000s[4]. Due to increasing application rates of synthetic
nitrogen fertilizers, the rate of nitrous oxide emission in
atmosphere has increased rapidly[5]. Simultaneously, the biodi-
versity of agroecosystems in Europe has been significantly
negatively related to N inputs[6].

Decreasing farmland biodiversity in intensive agroecosystems is
a major concern for food security and global climate change[7].
In contrast, multicropping systems increase on-farm biodiversity
and have potential advantages in yield and yield stability, pest
and disease control, and reducing fertilizer use, and therefore
provide an efficient sustainable approach to ensure food security
with minimal environmental costs[2].

1.2 Monoculture to crop diversification: one
solution for modern agricultural problems
Species diversity is a major determinant of ecosystem produc-
tivity, stability, invasibility and nutrient dynamics[8]. Crop
diversification in agroecosystems can be increased on a temporal
scale via crop rotations and on a spatial scale via cover crops,
crop mixtures, agroforestry and intercropping[2]. Crop rotation
involves growing different crops in different seasons in the same
field. Rotation of different crops reduces disease inoculum due to
host absence and organic residues that can affect the pathogens
or antagonistic organisms[9]. A cover crop is defined as any
living ground cover that is planted with or after the main crop,
and usually killed before the next crop is planted, and a cover

crop is used primarily for erosion control, improving soil health,
enhancing water availability, helping to control weeds, insects
and diseases, and increasing biodiversity in a farming system[9].
Crop mixtures are two or more different crop species or different
cultivars of the same crop species grown simultaneously in the
same field in alternate rows or mixture with no distinct row
arrangement[10]. Of the different kinds of crop diversification in
agroecosystems, intercropping, which grows at least two crops
simultaneously at the same field, has attracted considerable
interest because of its great potential to increase biodiversity and
use resources, when more attention is given to sustainable
agriculture development[11].

1.3 Current types and distribution of intercropping
all over the world: China and globally
Intercropping has a history of thousands of years in China and
other parts of the world. Intercropping is an ancient farming
system that is still widely practiced by smallholders not only in
China, but also in India, Africa and Latin America (Table 1). In
Latin America, 70%–90% of beans are grown with maize,
potatoes and other crops, 98% of cowpeas (Vigna unguiculata)
and 90% of beans are grown in intercropping in Africa and
Colombia[29]. Intercropping provides benefits to smallholders in
Africa through increased crop yields and income as well as
increased resource use[29]. A meta-analysis indicates that
intercropping increases crop yields by 23% and gross income
by 172 USD$ha–1 in Africa on average[30]. Intercropping is
practiced in almost every province in China, with the type of
intercropping more diverse in the east than in the west and more
diverse in the south than in the north[31]. About a third of the
total arable land is used for multicropping, of which 33 Mha of
arable land was used for intercropping in the 1990s in China[32].
A recent study indicates that intercropping was practiced on
about 3% of the arable land in 68 villages across six Chinese
provinces in 2014[32]. In Europe, there is currently less common
use by farmers but scientists and agronomists have endeavored
to use crop diversification to solve issues with intensive
agriculture[33]. An intercropping system with legume cover
crops demonstrates that legumes can increase soil cover and
increase soil fertility in farmland[23]. Also, intercropping of
forages such as peas (Pisum sativum) and barley (Hordeum
vulgare) provides higher quality feed[24].

2 WHY INTERCROPPING IS
SUSTAINABLE

In contrast to natural ecosystems, intensive agroecosystems have
many unique characteristics such as decreased plant diversity,
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increased inputs of mineral fertilizers and pesticides, and
monocultures of high-yielding cultivars[34]. Compared to
intensive agriculture, intercropping can increase yield and
yield stability, utilize resources efficiently, suppress pests and
diseases, mitigate climate change, control soil pollution and
increase on-farm biodiversity, which can contribute to the
sustainable intensification of agriculture if the aim is to increase
yields without compromising environmental integrity (Fig. 1)[1].

2.1 Increasing yield and stability of productivity

Numerous studies show that intercropping has yield advantages
compared to monoculture (Fig. 1(a)). The land equivalent ratio
(LER) is defined as the relative land area under monoculture that
is required to produce the yields achieved in intercropping and is
used to assess crop performance in intercropping relative to
monoculture[35]. A meta-analysis has found that intercrops were
more efficient in land use than monocultured crops, with 434 out
of 552 calculated LERs >1[36]. In another meta-analysis including
126 studies that covered 41 countries, intercrops produced 38%
more biomass (mean relative land output of 1.38) compared to
monocultures[37].

In barley and faba bean mixed cropping in the Ethiopian
highlands, increasing the percentage of faba bean from 13% to
63% increased faba bean grain yields from 12% to 48% but
lowered barley grain yields from 93% to 73% of the
corresponding monoculture yields. At the same time, mean
values of LER ranged from 1.05 to 1.23 in different mixed
proportions of barley and faba bean[38]. Maize-common bean
(Phaseolus vulgaris) intercropping is widely practiced by
smallholders in sub-Saharan Africa, and the LER of maize
intercropped with two cultivars of common bean were 1.48 and
1.55[39]. The LERs show that plant growth resources were used
on average 5%–10% more efficiently with N application and 20%
more efficiently without N application in pea-barley intercrop-
ping[35]. Sorghum (Sorghum bicolor)-desmodium (Desmodium
intortum) intercropping significantly increased grain yields by
63% compared to monocultures in East Africa[40]. In India,
intercropping soybean and pigeon pea yields higher than
monocultures, and the area-time equivalent ratio (ATER) was
1.27[41]. Compared to the weighted means of corresponding
monocultures, the average total grain yields of rape (Brassica
campestris)-maize, faba bean-maize, chickpea-maize and
soybean-maize intercropping systems increased by 31%,
24%, 45%, and 39%, respectively, in northwest China[18].

Table 1 Distribution and land equivalent ratio (LER) of the main intercropping systems of selected countries

Continent Country/Region Intercropping system LER Reference

Africa Ethiopia Wheat (Triticum aestivum)-faba bean (Vicia faba) 1.03–1.17 [12]

Malawi Maize (Zea mays)-pigeon pea (Cajanus cajan) – [13]

Nigeria Rice (Oryza sativa)-cowpea 1.13–1.85 [14]

Asia China Maize-pea 1.18–1.47 [15]

Wheat-maize 1.14–1.33 [16]

Maize-soybean (Glycine max) 1.91–2.13 [17]

Maize-faba bean 0.94–1.47 [18]

India Maize-soybean 1.1–1.6 [19]

Rice-peanut (Arachis hypogaea) 1.66 [20]

Iran Sunflower (Helianthus annus)-soybean 0.82–1.28 [21]

Europe England Maize-faba bean 1.02–1.23 [22]

France Wheat-clover (Trifolium) – [23]

Italy Ryegrass (Lolium perenne)-clover 1.1–1.2 [24]

North America Canada Pea-barley (Hordeum vulgare) 1.13–1.31 [25]

Pea-oat (Avena sativa) 1.13–1.29 [25]

United States Winter wheat-clover – [26]

Oceania Australia Wheat-chickpea (Cicer arietinum) 0.97–1.10 [27]

South America Brazil Cowpea (Vigna unguiculata)-beet (Beta vulgaris) 1.05–1.11 [28]
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Intercropping saves the cultivated area while increasing
productivity, offering a great opportunity for sustainable
intensification of agriculture.

Temporal stability of productivity, an important indicator of
agricultural sustainability, is often calculated as the mean
biomass of a community or of each species divided by its
temporal standard deviation[42]. Biodiversity increases the
temporal stability of community biomass and decreases that of
species biomass in a decade-long grassland experiment[42].
Compared to rice monoculture, a field survey demonstrated that
a rice-fish co-culture system had similar rice yields and rice-yield
stability but required 68% less pesticide and 24% less mineral
fertilizer[43]. In experimental and participatory research with
crop diversity (including rotation, semiperennial rotation,
intercropping and semiperennial intercropping systems) in
Africa, semiperennial rotation systems at half-fertilizer rates

produced equivalent quantities of grain, on a more stable basis
(yield stability increased from 13% to 22%) compared to
monoculture. Crop diversification with legumes can enhance
environmental and food security in Africa[13]. Through meta-
analysis of data from 94 sorghum-pigeon pea intercropping
experiments, the yield stability of the intercropping system was
shown to be higher than in monocultures, especially under stress
situations, estimating the probability of cropping systems failing
to given ‘disaster’ levels of monetary returns, monocultured
pigeon pea would fail approximately one year in five, mono-
cultured sorghum one year in eight, but intercropping only once
in 36 years under a particular disaster level[44]. The meta-
analysis compared yield stability in intercropping with the
respective monocultures from 33 published papers and found
that cereal-grain legume intercropping (CV = 22%) significantly
increased yield stability compared to the corresponding grain
legume monocultures (CV = 32%). Moreover, cereal-grain

Fig. 1 Crop diversity and the coexistence of multiple species have been used as an example of improved agroecosystem functions. Compared to

monocultures, intercropping increased the productivity and yield stability, reduced agrochemical inputs and thus the environmental costs

(greenhouse gas emissions, water and soil pollution), and increasing insect diversity improved crop pollination and reduced plant diseases.

Intercropping increases soil fertility in terms of chemical, biological and physical properties.
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legume intercropping has higher yield stability than non-cereal-
grain legume intercropping systems[45].

2.2 Efficient use of resources and saving mineral
fertilizers
Nitrate is a problematic contaminant in agricultural regions and
nitrous oxide (N2O) is a greenhouse gas, and both are derived
mainly from excess fertilizer N use[46,47]. Intercropping reduces
the inputs of nitrogen fertilizers through the efficient use of
resources[11] and further reduces ammonia volatilization and
NO and N2O emissions (Fig. 1(b)). A meta-analysis shows that
376 of 409 values of fertilizer nitrogen equivalent ratio (FNER)
were > 1 (92%), indicating that intercropping achieved not only
high yields but also high nitrogen use efficiency[48]. In
intercropping systems with maize the FNER was higher than
that of intercrops without maize, indicating that intercrops with
maize save more N fertilizer compared with monocultures and
intercrops without maize[49]. Legumes can fix N2 and reduce
mineral fertilizer input in legume-based intercropping
(Fig. 1(b)). Also, legumes fix more nitrogen (per plant) when
they are intercropped with cereals because cereals have higher
competitive ability for nitrogen[48]. Reducing the input of
nitrogen fertilizer can alleviate the impact of nitrate and nitrite
on soils and reduce NO and N2O emissions[46]. A recent study
compared the N2O emission ratio (N2O emission amount/N
applied) in monocultured maize and soybean and maize-
soybean intercropping and found that the N2O emission ratio
of the intercropping was the lowest and that of monocultured
maize was the highest[17]. Intercropping of deep-rooted (maize)
and shallow-rooted (pepper) plants increased nutrient acquisi-
tions and N use efficiency and thus reduced nitrate leaching
losses[47].

Phosphorus is a limited and non-renewable resource and the
overuse of P has led to increasing accumulation of P in soils, low
P use efficiency in agriculture and high environmental risk[50]. A
field experiment in northwest China shows that maize-turnip
(Brassica rapa), maize-faba bean, maize-chickpea and maize-
soybean intercropping systems explored the biological potential
for efficient acquisition of P toward a sustainable and productive
agroecosystem[18]. In maize-faba bean intercropping, the P
acquisition of both intercropped faba bean and maize accumu-
lated more than that of their corresponding monocultures, with
the average P acquisition of intercropped faba bean increasing by
42.4% compared to monocultured faba bean at the start of
flowering[51]. Compared with monoculture, the average appar-
ent recovery of fertilizer P of the intercropping systems increased
from 6% to 30% at 40 kg$ha–1 P and from 5% to 14% at
80 kg$ha–1 P on average over three years[18].

2.3 Pest and disease management: reducing
pesticides
Plant diversity improves pest control through movement
patterns, host associations, and predation which provide a
prominent and sustainable management tactic[52]. A meta-
analysis shows that high-diversity cropping systems have greater
abundance (or occasionally richness) of natural enemies and
herbivore mortality than low-diversity cropping systems[53].
Maize-legume intercropping and push-pull technology were
effective in management of stemborer and fall armyworm in
Africa, and intercropping maize with leguminous crops
significantly reduced the severity of stemborer and fall army-
worm compared to monocultured maize[54].

Panicle blast severity was ~ 20% in monocrops of glutinous
cultivars but was reduced to 1% in mixed populations of
glutinous and hybrid rice cultivars[55]. Compared with mono-
cultured potatoes, potatoes (Solanum tuberosum) intercropped
with maize reduced the adult and larva populations and reduced
the damage from potato tuber moth by enhancing the number of
parasitoids and the level of parasitism, and two rows of potatoes
intercropped with three rows of maize showed the greatest
population of parasitoids and parasitism[56]. Severity of northern
maize leaf blight in intercropped plots was decreased signifi-
cantly by 17% and 20%, 56% and 50%, and 30% and 23% in
maize-tobacco (Nicotiana alata), maize-sugarcane (Saccharum
officinarum) and maize-potato intercropping systems in two
years, and the severity of broad bean (Vicia faba) chocolate spot
disease declined by 34% when broad bean was intercropped with
wheat[57].

2.4 Mitigating climate change and controlling soil
pollution
Soil fertility and carbon sequestration impact global climate
change, maintain soil fertility and reduce carbon emissions in
agriculture and may thus alleviate global warming[58,59]. Soil
fertility, including physical, chemical and biological properties,
directly or indirectly affect plant productivity, water and air
quality[60]. Higher plant species diversity increased soil carbon
and nitrogen stocks compared with monocultures via greater
root biomass accumulation in a perennial grassland[61]. High
biodiversity led to increased carbon storage in roots and soil, and
increased biomass yields will mitigate climate change if the
biomass displaces fossil fuel use[59]. A long-term field experi-
ment established in 2003 shows that soil organic C content and
soil organic N content in intercropping were greater than in
monoculture[62]. In maize-wheat, maize-rape (Brassica napus),
and maize-pea intercropping systems, intercropping produced
more grain yield versus monocultures and emitted 50% less C
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per ha per mm of water on average compared with the maize
monoculture[63]. Maize silage is an important feedstock for
biogas production. The global warming potential of maize-
forage sorghum intercropping was 7.3% lower than maize silage,
and forage sorghum-maize intercropping thus had lower
environmental impact compared with monocultured maize,
providing a promising alternative to maize silage for biogas
production[64].

Contamination of soils with potentially toxic elements in
agroecosystems is a critical issue affecting food security and
food safety worldwide. Cd, Cr, Cu, Hg, Pb and Zn are the most
common potentially toxic metals in contaminated soils[65] that
lead to environmental degradation and inhibit plant growth[66].
Compared with monoculture, faba bean intercropping with
Sedum alfredii inoculated with a plant growth promoting
endophyte increased biomass as well as Cd and Pb concentra-
tions in associated plant species, thus enhancing the Cd and Pb
removal efficiencies[66]. Also, intercropping reduced Cd and Pb
concentrations in faba bean to within the permissible range (0–
0.2 mg$kg–1, FW)[66].

2.5 Increasing above- and below-ground
biodiversity of other taxa at field scale
Pollination is an ecosystem service that is critical to crops. Honey
bees and wild pollinators (e.g., flies, beetles, moths, and
butterflies) provide substantial pollination services[67]. Strong
evidence shows that increasing plant diversity increases
pollinators[68]. A field experiment found that increasing plant
species richness significantly enhanced the functional diversity
of pollinator communities and pollination services in grass-
land[69]. Great diversity of soil microorganisms and animals are
essential in above-ground production and ecosystem functions
such as litter decomposition and nutrient cycling[70].

Little attention has been paid to the effects of above-ground
plant diversity on below-ground biodiversity. High plant species
diversity can increase the diversity of mutualistic microfauna
and other animal groups in soil through diverse litter quality,
litter types or root exudates entering the soil[71]. A recent review
shows that there is no general trend in the relationship between
tree diversity and soil faunal diversity or abundance[70].
However, most studies did find that increased tree diversity or
the addition of broadleaved trees to conifer stands had a positive
effect on diversity or abundance of earthworms or soil
microarthropods[70]. Wheat-clover intercrops significantly
increased earthworm populations in terms of abundance and
biomass compared to monocultured wheat[72]. A recent study
shows that intercropping systems changed soil microbial

community composition and increased the relative abundance
of soil sordariales[73].

3 MECHANISMS UNDERLYING
IMPROVED AGROECOSYSTEM
FUNCTIONING OF INTERCROPPING

3.1 Contribution of complementarity and selection
effects
There is a growing consensus that species diversity enhances
ecosystem function in forest, grassland and agricultural
ecosystems[42,43]. Several mechanisms have been proposed to
explain the positive relationship between species diversity and
ecosystem functions. Complementarity effects occur through
either niche differences or facilitative interactions among
species, resulting in greater resource acquisition and thus higher
productivity[74]. Selection effects occur because polycultures
have a higher chance of containing a single, productive taxon[75].
However, the relative strengths of complementarity effects and
selection effects change across scales. A ten-year biodiversity
experiment shows that complementarity effects increase while
selection effects decrease through time[74]. Positive net biodi-
versity effects were attributed to complementarity effects at local
scales but to selection effects at larger scales of space or time[76].

Complementarity effects are usually divided into niche differ-
entiation and interspecific facilitation (Fig. 2). Above-ground
niche differences are driven by light while below-ground niche
differences are always driven by water and nutrient availability.
Complementarity effects promoted positive biodiversity-pro-
ductivity relationships in communities of young trees through
increasing differences in vertical leaf niches and growth
strategies between species[77]. In more diverse grassland plant
communities, niche partitioning in water uptake via root
distribution results in higher efficiency of water use[78].
Complementarity and selection effects may also be important
mechanisms for overyielding of agroecosystems. In addition to
niche complementarity, interspecific facilitation, via increasing
nitrogen, phosphorus and micronutrient use efficiency, also has
an important role in intercropping (Fig. 2). Here, we introduce
the biodiversity effects of intercropping in terms of interspecific
facilitation and niche differences (Fig. 3).

3.2 Interspecific facilitation in intercropping
Facilitative interactions (also known as abiotic facilitation) are
usually defined as species differing in their ability to alter
their habitat to benefit neighbors[79]. In steppe vegetation,
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P-mobilizing species facilitated growth and increased P
concentration of neighboring species, and this was a mechanism
underlying a positive complementarity effect in P-limited
communities[80]. Nurse species can benefit plant communities
by relieving local abiotic stress and promote plant-microbe
interactions[81]. Interspecific facilitation is caused mainly by the
complementary use of resources, especially water, nitrogen and
phosphorus in intercropping[15,82]. In arid and semiarid areas,
intercropping often increases water availability or enhances
water-use efficiency (WUE) through the spatial and temporal
complementary of root distribution or shared mycorrhiza
networks. For example, shallow-rooted species can access

water from neighboring plant species with deep root systems[83].
Compared to monocultured maize, maize-cowpea intercropping
increased crop cover and reduced soil moisture evaporation[84].
Pea-maize intercropping systems are widely used in northwest
China, with intercropping increasing the WUE of maize but
decreasing that of pea, and the effect of intercropping on WUE
depends on the row arrangement of the intercropping system
and shows high variability[15] (Fig. 3(f)).

Biological dinitrogen fixation is an efficient source of nitrogen
for sustainable agricultural production (Fig. 3(b,e)). Biologically
fixed nitrogen in legumes can be transferred to adjacent cereal

Fig. 2 The mechanisms of complementarity effects and selection effects driving overyielding in intercropping.
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crops in legume-cereal intercropping systems[85]. For example,
nitrogen transfer from cowpea and lupin (Lupinus micranthus)
to lettuce (Lactuca sativa) can be ~ 4 and 6 kg$ha–1,
respectively[86]. Using the 15N labeling method, nitrogen transfer
from the rhizosphere of mung bean (Vigna radiata) to oat was
82 mg per plant, accounting for 16% of the total nitrogen content
of oat. The amount transferred from the oat rhizosphere to
mung bean was 38 mg per plant, accounting for nearly 9% of the
total nitrogen content of mung bean[87]. Root-root interactions
driven by maize root exudates stimulate nodulation and N2

fixation by faba bean in maize-faba bean intercropping systems.
A series of experiments shows that maize root exudates induce
significant upregulation of expression of CFI, NODL4, GH3.1,
ENODL2, FixI and ENOD93 genes in faba bean roots, facilitating
the nodulation of faba bean (Fig. 3(d))[75]. These results indicate
that N facilitative interactions provide a potential explanation
for a positive relationship between biodiversity and ecosystem
productivity.

Phosphorus is an essential element to higher plants in many
ecosystems. Some soils contain a large amount of P which is
unavailable to most plant species[82]. Chickpea facilitates P
uptake by intercropped wheat from an organic phosphorus
source in a pot experiment with different root barriers.
Compared with a solid root barrier where there were no
interspecific root-root interactions, total P uptake by plants was
68% greater with mixed roots and 37% greater with a nylon mesh
barrier[88] where the root-root interactions were full and partial,
respectively, in maize-faba bean intercropping. Faba bean can
release carboxylates, acid phosphatase and protons which
increase soil P availability and improve the P nutrition of
neighboring maize[88]. In cereal-legume intercropping system
the interspecific below-ground interactions increase crop
acquisition of soil P as follows: (1) different species require
different forms of P, thus reducing competition for P between
these plant species; (2) root exudates of legumes can promote the
P acquisition of neighboring maize; (3) P acquisition is indirectly

Fig. 3 Interspecific facilitation and niche differentiation increase resource use efficiency. (a) Differences in plant height and light requirement

increase light interception and use efficiency. (b) Biological nitrogen fixation (BNF) of legumes reduces the nitrogen fertilizer input. (c) Root

exudates of legumes increase the uptake of insoluble nutrients. (d) Root exudates from maize enhance faba bean nodulation and increase

dinitrogen fixation. (e) Nitrogen transfer through root exudation, root decomposition and mycorrhizal fungal networks. (f) Differences in root

distribution result in spatial complementarity.
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promoted by the activity of microbes in the soil[89]. When maize
was grown with different intercrops under homogeneous or
heterogeneous P distribution, localized P application or faba
bean exudation increased P availability and increased shoot
growth in maize in the maize-faba bean mixture[90]. Mobiliza-
tion of sparingly soluble P by legumes benefited neighboring
plants and increased P use efficiency with low-P fertilizers
(Fig. 3(c)).

Iron, zinc, copper and other essential micronutrients of crops are
involved in many essential physiological processes of plants.
Compared to peanut monoculture, young leaves of peanut had
higher chlorophyll content and HCl-extractable Fe concentra-
tions in maize-peanut intercropping and the improved Fe
nutrition of peanut in intercropping was mainly due to
rhizosphere interactions between peanut and maize[91]. Recent
advances have also demonstrated that peanut can take up Fe
chelated by plant Fe-carriers and improve their Fe nutrition[92]

(Fig. 3(c)). In chickpea-wheat intercropping, interspecific inter-
actions increased the Fe contents in wheat and chickpea seeds by
1.26 and 1.21 times, and Zn concentration in chickpea seed by
2.82 times compared with monoculture. Improved Fe and Zn
nutrition were also observed in guava (Psidium guajava)-
sorghum or maize intercropping[93].

3.3 Niche differentiation in intercropping
Niche differentiation is considered to be a key driver for
biodiversity enhancing ecosystem function in a diverse plant
community[8]. Yu et al.[94] defined the index of temporal niche
differentiation (TND) as the proportion of the total system time
that component crops grow alone, and found that the LER of
intercropping increases with TND. A recent meta-analysis
shows that complementary effects increased with TND in
maize-legume intercropping[95]. In wheat-maize and barley-
maize intercropping in northwest China, wheat, barley and
maize reached their peak daily nutrient uptake rates at different
periods, with wheat and barley the dominant species at early co-
growth stages, and the growth of maize was suppressed at early
growth stages but recovered rapidly after the wheat or barely
harvest. This study suggests that a temporal niche differentiation
in nutrient use between these plants led to yield advantages of
intercropping[96]. In oilseed rape-maize, oilseed rape-soybean
and potato-maize intercropping, the time taken to attain
maximum the daily growth rate was also different between
intercropped species[97]. Maize-soybean relay intercropping is
the main planting pattern in southwest China because of its high
LER, and temporal differentiation in sowing and harvest dates
increased nutrient use efficiency and led to overyielding of the
whole intercropping system[17]. Altering the planting time of

soybean in maize-soybean relay intercropping systems can
reduce the competitive effect of maize on soybean, decreasing
co-growth duration and increasing the grain yield of soybean via
temporal niche differentiation[98].

Light is a limiting resource affecting many ecological processes
in agroecosystems. Greater interception of solar radiation and
higher use efficiency of light result in greater productivity in
intercropping[99] (Fig. 3(a)). The dominant plant species (inter-
cropped maize) had a similar radiation use efficiency (RUE) to
monocultures, but the subordinate plant species (legumes) had
greater RUE in intercropping than in monocultures, thus
intercropping had greater RUE than monocultures and this
may account for the yield advantage of intercropping[100]. Crop
mixtures with different root distribution are able to occupy a
larger niche space and thus can acquire more unexploited soil
resources than monocultures[101]. In maize-faba bean intercrop-
ping the roots of maize usually spread under the faba bean
rows[102]. Intercropped wheat altered its root length density and
lateral root distribution under different N application regimes,
while lateral root distribution of intercropped maize was less
sensitive to N application regime[16]. High morphological
plasticity of crop roots drives below-ground spatial niche
complementarity and increases resource use efficiency of
intercropping systems (Fig. 3(f)).

4 CONCLUSIONS

Intensive agriculture often pursues maximization of the
productivity of monoculture with greater inputs of fertilizer,
water and pesticides, and thus incurs substantial environmental
costs. Intercropping is a traditional cropping system that has
been practiced worldwide, especially in China, for thousands of
years. Intercropping can contribute to food and livelihood
security and potentially increase the long-term sustainability of
food production with low environmental cost globally[29,43]

(Fig. 4). This review summarizes strong evidence of the positive
impact of crop diversification, especially intercropping on
agroecosystem functions such as increasing yield and stability,
increasing resource use efficiency, suppression of pests or
diseases, reduction of carbon emissions and controlling soil
pollution. The partition of complementarity and selection effects
helps us better understand the mechanisms of spatial and
temporal niche separation and facilitation in multiple cropping
systems.

Intercropping practices are usually more labor-intensive than
monocultures with fewer options for the use of machinery in
intercropping. In addition, rural-to-urban labor migration has
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increased in China and, as a result, the development of
intercropping is restricted due to the scarcity of rural labor
and low degree of mechanization. Existing farm machinery can
be used if the strip-width is adjusted in strip intercropping.
Appropriate crop combinations with maximization of comple-
mentarity are critical in achieving greater advantages of
intercropping. Long-term intercropping experiments are needed
to detect possible slow changes produced by intercropping over
the long term and to reveal the sustainable development of
intercropping.

Quantifying and evaluating soil health will be necessary for
managing soil-ecosystem services. Soil-health indicators can be
classified as physical, chemical or biological, while previous

studies have usually focused on some of these properties. Soil
health should be considered as an important principle that
contributes to sustainable development goals rather than only a
property to measure in intercropping[49]. Biodiversity can
simultaneously maintain multiple ecosystem functions and
services (multifunctionality) in natural ecosystems[103].
However, the relationship between intercropping and
multifunctionality has not been assessed. Finally, models
integrating climate, soil, crop species and genotype modules
can help to reveal how interspecific interactions change
under various climatic and edaphic conditions, and this is
critical in evaluating productivity, sustainability, climate risk
and resource use efficiency of intercropping systems on larger
scales.

Fig. 4 Intercropping provides an alternative way to ensure food security and develop sustainable agriculture.
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